Given any 3 digit number you can use the given digits and name another number which is divisible by 37 (e.g. given 628 you say 628371 is divisible by 37 because you know that 6+3 = 2+7 = 8+1 = 9). . . .

Can you find any perfect numbers? Read this article to find out more...

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Is there an efficient way to work out how many factors a large number has?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

Can you find any two-digit numbers that satisfy all of these statements?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Can you find a way to identify times tables after they have been shifted up or down?

How many zeros are there at the end of the number which is the product of first hundred positive integers?

How many noughts are at the end of these giant numbers?

Play this game and see if you can figure out the computer's chosen number.

Given the products of adjacent cells, can you complete this Sudoku?

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Find the highest power of 11 that will divide into 1000! exactly.

What is the smallest number of answers you need to reveal in order to work out the missing headers?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?