Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.
Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?
Is there an efficient way to work out how many factors a large number has?
Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.
Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .
Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?
Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.
Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?
Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.
A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?
I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...
Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?
Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?
Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.
Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?
List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?
Got It game for an adult and child. How can you play so that you know you will always win?
Can you explain the strategy for winning this game with any target?
Imagine we have four bags containing numbers from a sequence. What numbers can we make now?
The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.
Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.
How many zeros are there at the end of the number which is the product of first hundred positive integers?
Can you find any two-digit numbers that satisfy all of these statements?
The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?
Each clue in this Sudoku is the product of the two numbers in adjacent cells.
I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?
The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?
Given the products of adjacent cells, can you complete this Sudoku?
Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...
Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .
What is the smallest number of answers you need to reveal in order to work out the missing headers?
The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?
The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?
How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?
Can you find any perfect numbers? Read this article to find out more...
A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.
Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?
Explore the relationship between simple linear functions and their graphs.
Which pairs of cogs let the coloured tooth touch every tooth on the other cog? Which pairs do not let this happen? Why?
Find the highest power of 11 that will divide into 1000! exactly.
The clues for this Sudoku are the product of the numbers in adjacent squares.
Play this game and see if you can figure out the computer's chosen number.
Great Granddad is very proud of his telegram from the Queen congratulating him on his hundredth birthday and he has friends who are even older than he is... When was he born?
I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?
Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.
115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?
Given the products of diagonally opposite cells - can you complete this Sudoku?
Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.
A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"