The clues for this Sudoku are the product of the numbers in adjacent squares.

Play this game and see if you can figure out the computer's chosen number.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

Given the products of adjacent cells, can you complete this Sudoku?

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

Can you find any perfect numbers? Read this article to find out more...

How many zeros are there at the end of the number which is the product of first hundred positive integers?

Follow this recipe for sieving numbers and see what interesting patterns emerge.

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Find the highest power of 11 that will divide into 1000! exactly.

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

You'll need to know your number properties to win a game of Statement Snap...

Can you make lines of Cuisenaire rods that differ by 1?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Given the products of diagonally opposite cells - can you complete this Sudoku?

Lyndon chose this as one of his favourite problems. It is accessible but needs some careful analysis of what is included and what is not. A systematic approach is really helpful.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Is there an efficient way to work out how many factors a large number has?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Each letter represents a different positive digit AHHAAH / JOKE = HA What are the values of each of the letters?

The flow chart requires two numbers, M and N. Select several values for M and try to establish what the flow chart does.

Data is sent in chunks of two different sizes - a yellow chunk has 5 characters and a blue chunk has 9 characters. A data slot of size 31 cannot be exactly filled with a combination of yellow and. . . .

How many integers between 1 and 1200 are NOT multiples of any of the numbers 2, 3 or 5?

This article takes the reader through divisibility tests and how they work. An article to read with pencil and paper to hand.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

A number N is divisible by 10, 90, 98 and 882 but it is NOT divisible by 50 or 270 or 686 or 1764. It is also known that N is a factor of 9261000. What is N?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

Can you work out what size grid you need to read our secret message?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Consider numbers of the form un = 1! + 2! + 3! +...+n!. How many such numbers are perfect squares?

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?