List any 3 numbers. It is always possible to find a subset of adjacent numbers that add up to a multiple of 3. Can you explain why and prove it?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find some examples of pairs of numbers such that their sum is a factor of their product. eg. 4 + 12 = 16 and 4 × 12 = 48 and 16 is a factor of 48.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Can you explain the strategy for winning this game with any target?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Can you find any perfect numbers? Read this article to find out more...

Can you find any two-digit numbers that satisfy all of these statements?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Got It game for an adult and child. How can you play so that you know you will always win?

Find the highest power of 11 that will divide into 1000! exactly.

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Is there an efficient way to work out how many factors a large number has?

How many noughts are at the end of these giant numbers?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Can you find a way to identify times tables after they have been shifted up or down?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

The clues for this Sudoku are the product of the numbers in adjacent squares.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Explore the factors of the numbers which are written as 10101 in different number bases. Prove that the numbers 10201, 11011 and 10101 are composite in any base.

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

Helen made the conjecture that "every multiple of six has more factors than the two numbers either side of it". Is this conjecture true?

Can you find what the last two digits of the number $4^{1999}$ are?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Using the digits 1 to 9, the number 4396 can be written as the product of two numbers. Can you find the factors?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

115^2 = (110 x 120) + 25, that is 13225 895^2 = (890 x 900) + 25, that is 801025 Can you explain what is happening and generalise?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .