What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

How many different rectangles can you make using this set of rods?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you complete this jigsaw of the multiplication square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Given the products of diagonally opposite cells - can you complete this Sudoku?

An investigation that gives you the opportunity to make and justify predictions.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Have a go at balancing this equation. Can you find different ways of doing it?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Can you make square numbers by adding two prime numbers together?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

The clues for this Sudoku are the product of the numbers in adjacent squares.

A collection of resources to support work on Factors and Multiples at Secondary level.

Can you explain the strategy for winning this game with any target?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Got It game for an adult and child. How can you play so that you know you will always win?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Number problems at primary level that may require resilience.

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Number problems at primary level to work on with others.