Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How many different sets of numbers with at least four members can you find in the numbers in this box?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you complete this jigsaw of the multiplication square?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

An investigation that gives you the opportunity to make and justify predictions.

If you have only four weights, where could you place them in order to balance this equaliser?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

The clues for this Sudoku are the product of the numbers in adjacent squares.

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you explain the strategy for winning this game with any target?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

Can you find different ways of creating paths using these paving slabs?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.