Does this 'trick' for calculating multiples of 11 always work? Why or why not?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Can you work out some different ways to balance this equation?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Find some triples of whole numbers a, b and c such that a^2 + b^2 + c^2 is a multiple of 4. Is it necessarily the case that a, b and c must all be even? If so, can you explain why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Three people chose this as a favourite problem. It is the sort of problem that needs thinking time - but once the connection is made it gives access to many similar ideas.

Given the products of adjacent cells, can you complete this Sudoku?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

Using the digits 1, 2, 3, 4, 5, 6, 7 and 8, mulitply a two two digit numbers are multiplied to give a four digit number, so that the expression is correct. How many different solutions can you find?

Is there an efficient way to work out how many factors a large number has?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Have a go at balancing this equation. Can you find different ways of doing it?

What is the smallest number of answers you need to reveal in order to work out the missing headers?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Find the highest power of 11 that will divide into 1000! exactly.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Play this game and see if you can figure out the computer's chosen number.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Number problems at primary level to work on with others.

Number problems at primary level that may require resilience.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

This article for teachers describes how number arrays can be a useful representation for many number concepts.

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?