Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

How many different sets of numbers with at least four members can you find in the numbers in this box?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

An investigation that gives you the opportunity to make and justify predictions.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

How many different rectangles can you make using this set of rods?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

A game in which players take it in turns to choose a number. Can you block your opponent?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you complete this jigsaw of the multiplication square?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Can you explain the strategy for winning this game with any target?

Number problems at primary level to work on with others.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of diagonally opposite cells - can you complete this Sudoku?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Number problems at primary level that may require resilience.

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

The clues for this Sudoku are the product of the numbers in adjacent squares.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Can you find different ways of creating paths using these paving slabs?

Got It game for an adult and child. How can you play so that you know you will always win?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.