In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

An investigation that gives you the opportunity to make and justify predictions.

Got It game for an adult and child. How can you play so that you know you will always win?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you explain the strategy for winning this game with any target?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Investigate the different shaped bracelets you could make from 18 different spherical beads. How do they compare if you use 24 beads?

How many different sets of numbers with at least four members can you find in the numbers in this box?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Number problems at primary level that may require resilience.

Can you find different ways of creating paths using these paving slabs?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

"Ip dip sky blue! Who's 'it'? It's you!" Where would you position yourself so that you are 'it' if there are two players? Three players ...?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Are these statements always true, sometimes true or never true?

Can you make square numbers by adding two prime numbers together?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

If you have only four weights, where could you place them in order to balance this equaliser?

Number problems at primary level to work on with others.

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This article for teachers describes how number arrays can be a useful representation for many number concepts.