Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

What is the value of the digit A in the sum below: [3(230 + A)]^2 = 49280A

Can you find any two-digit numbers that satisfy all of these statements?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

56 406 is the product of two consecutive numbers. What are these two numbers?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

This article for teachers describes how number arrays can be a useful representation for many number concepts.

Find the highest power of 11 that will divide into 1000! exactly.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

I added together the first 'n' positive integers and found that my answer was a 3 digit number in which all the digits were the same...

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Is there an efficient way to work out how many factors a large number has?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

What is the remainder when 2^2002 is divided by 7? What happens with different powers of 2?

6! = 6 x 5 x 4 x 3 x 2 x 1. The highest power of 2 that divides exactly into 6! is 4 since (6!) / (2^4 ) = 45. What is the highest power of two that divides exactly into 100!?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Are these statements always true, sometimes true or never true?

I'm thinking of a number. My number is both a multiple of 5 and a multiple of 6. What could my number be?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Using your knowledge of the properties of numbers, can you fill all the squares on the board?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

I put eggs into a basket in groups of 7 and noticed that I could easily have divided them into piles of 2, 3, 4, 5 or 6 and always have one left over. How many eggs were in the basket?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

The five digit number A679B, in base ten, is divisible by 72. What are the values of A and B?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

Explain why the arithmetic sequence 1, 14, 27, 40, ... contains many terms of the form 222...2 where only the digit 2 appears.

Complete the following expressions so that each one gives a four digit number as the product of two two digit numbers and uses the digits 1 to 8 once and only once.

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you find a way to identify times tables after they have been shifted up or down?

Can you complete this jigsaw of the multiplication square?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?