Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Given the products of diagonally opposite cells - can you complete this Sudoku?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

A collection of resources to support work on Factors and Multiples at Secondary level.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Factors and Multiples game for an adult and child. How can you make sure you win this game?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Here is a machine with four coloured lights. Can you develop a strategy to work out the rules controlling each light?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you complete this jigsaw of the multiplication square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

56 406 is the product of two consecutive numbers. What are these two numbers?

Given the products of adjacent cells, can you complete this Sudoku?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Play this game and see if you can figure out the computer's chosen number.

One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Got It game for an adult and child. How can you play so that you know you will always win?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you explain the strategy for winning this game with any target?

A game in which players take it in turns to choose a number. Can you block your opponent?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Guess the Dominoes for child and adult. Work out which domino your partner has chosen by asking good questions.

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

Can you work out how many lengths I swim each day?

Find the number which has 8 divisors, such that the product of the divisors is 331776.

Does a graph of the triangular numbers cross a graph of the six times table? If so, where? Will a graph of the square numbers cross the times table too?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

The number 12 = 2^2 × 3 has 6 factors. What is the smallest natural number with exactly 36 factors?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you find any perfect numbers? Read this article to find out more...