One quarter of these coins are heads but when I turn over two coins, one third are heads. How many coins are there?

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

56 406 is the product of two consecutive numbers. What are these two numbers?

Number problems at primary level that may require resilience.

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Can you make square numbers by adding two prime numbers together?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

This article for teachers describes how number arrays can be a useful representation for many number concepts.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

Number problems at primary level to work on with others.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Katie and Will have some balloons. Will's balloon burst at exactly the same size as Katie's at the beginning of a puff. How many puffs had Will done before his balloon burst?

If you have only four weights, where could you place them in order to balance this equaliser?

What happens if you join every second point on this circle? How about every third point? Try with different steps and see if you can predict what will happen.

Twice a week I go swimming and swim the same number of lengths of the pool each time. As I swim, I count the lengths I've done so far, and make it into a fraction of the whole number of lengths I. . . .

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Can you find different ways of creating paths using these paving slabs?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find the highest power of 11 that will divide into 1000! exactly.

The number 8888...88M9999...99 is divisible by 7 and it starts with the digit 8 repeated 50 times and ends with the digit 9 repeated 50 times. What is the value of the digit M?

The clues for this Sudoku are the product of the numbers in adjacent squares.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

An investigation that gives you the opportunity to make and justify predictions.

Can you find a way to identify times tables after they have been shifted up or down?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Nearly all of us have made table patterns on hundred squares, that is 10 by 10 grids. This problem looks at the patterns on differently sized square grids.

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?