Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Are these statements always true, sometimes true or never true?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

56 406 is the product of two consecutive numbers. What are these two numbers?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

How will you work out which numbers have been used to create this multiplication square?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Play this game and see if you can figure out the computer's chosen number.

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Can you find the chosen number from the grid using the clues?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

This article for teachers describes how number arrays can be a useful representation for many number concepts.

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Can you find any perfect numbers? Read this article to find out more...

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Can you sort numbers into sets? Can you give each set a name?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Number problems at primary level that may require resilience.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

Can you find different ways of creating paths using these paving slabs?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Factor track is not a race but a game of skill. The idea is to go round the track in as few moves as possible, keeping to the rules.

Got It game for an adult and child. How can you play so that you know you will always win?

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Your vessel, the Starship Diophantus, has become damaged in deep space. Can you use your knowledge of times tables and some lightning reflexes to survive?

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.