Can you sort numbers into sets? Can you give each set a name?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Can you find the chosen number from the grid using the clues?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

This article for teachers describes how number arrays can be a useful representation for many number concepts.

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Can you complete this jigsaw of the multiplication square?

Can you find different ways of creating paths using these paving slabs?

Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

How will you work out which numbers have been used to create this multiplication square?

Can you see how these factor-multiple chains work? Find the chain which contains the smallest possible numbers. How about the largest possible numbers?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

56 406 is the product of two consecutive numbers. What are these two numbers?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Work out Tom's number from the answers he gives his friend. He will only answer 'yes' or 'no'.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?

I am thinking of three sets of numbers less than 101. Can you find all the numbers in each set from these clues?

Norrie sees two lights flash at the same time, then one of them flashes every 4th second, and the other flashes every 5th second. How many times do they flash together during a whole minute?

I am thinking of three sets of numbers less than 101. They are the red set, the green set and the blue set. Can you find all the numbers in the sets from these clues?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Are these statements always true, sometimes true or never true?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?