Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

48 is called an abundant number because it is less than the sum of its factors (without itself). Can you find some more abundant numbers?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Can you work out some different ways to balance this equation?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

How will you work out which numbers have been used to create this multiplication square?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Have a go at balancing this equation. Can you find different ways of doing it?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find the chosen number from the grid using the clues?

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

How many different sets of numbers with at least four members can you find in the numbers in this box?

Can you make square numbers by adding two prime numbers together?

An investigation that gives you the opportunity to make and justify predictions.

How many different rectangles can you make using this set of rods?

Look at the squares in this problem. What does the next square look like? I draw a square with 81 little squares inside it. How long and how wide is my square?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

On the planet Vuv there are two sorts of creatures. The Zios have 3 legs and the Zepts have 7 legs. The great planetary explorer Nico counted 52 legs. How many Zios and how many Zepts were there?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Number problems at primary level to work on with others.

Number problems at primary level that may require resilience.

What is the lowest number which always leaves a remainder of 1 when divided by each of the numbers from 2 to 10?

Can you find different ways of creating paths using these paving slabs?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

I throw three dice and get 5, 3 and 2. Add the scores on the three dice. What do you get? Now multiply the scores. What do you notice?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Is it possible to draw a 5-pointed star without taking your pencil off the paper? Is it possible to draw a 6-pointed star in the same way without taking your pen off?