How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many different rectangles can you make using this set of rods?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you find the chosen number from the grid using the clues?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you complete this jigsaw of the multiplication square?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

An investigation that gives you the opportunity to make and justify predictions.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Got It game for an adult and child. How can you play so that you know you will always win?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

Can you make square numbers by adding two prime numbers together?

When Charlie asked his grandmother how old she is, he didn't get a straightforward reply! Can you work out how old she is?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

You'll need to know your number properties to win a game of Statement Snap...

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

Place four pebbles on the sand in the form of a square. Keep adding as few pebbles as necessary to double the area. How many extra pebbles are added each time?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Number problems at primary level that may require resilience.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

An environment which simulates working with Cuisenaire rods.

How will you work out which numbers have been used to create this multiplication square?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?