Are these statements always true, sometimes true or never true?

Got It game for an adult and child. How can you play so that you know you will always win?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Investigate the sum of the numbers on the top and bottom faces of a line of three dice. What do you notice?

Ben and his mum are planting garlic. Use the interactivity to help you find out how many cloves of garlic they might have had.

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

Benâ€™s class were cutting up number tracks. First they cut them into twos and added up the numbers on each piece. What patterns could they see?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

How can you use just one weighing to find out which box contains the lighter ten coins out of the ten boxes?

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This article for teachers describes how number arrays can be a useful representation for many number concepts.

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

Can you complete this jigsaw of the multiplication square?

Arrange any number of counters from these 18 on the grid to make a rectangle. What numbers of counters make rectangles? How many different rectangles can you make with each number of counters?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

Can you sort numbers into sets? Can you give each set a name?

Mr Gilderdale is playing a game with his class. What rule might he have chosen? How would you test your idea?

How many different rectangles can you make using this set of rods?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Look at three 'next door neighbours' amongst the counting numbers. Add them together. What do you notice?

Use cubes to continue making the numbers from 7 to 20. Are they sticks, rectangles or squares?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

An investigation that gives you the opportunity to make and justify predictions.

These red, yellow and blue spinners were each spun 45 times in total. Can you work out which numbers are on each spinner?

If you have only four weights, where could you place them in order to balance this equaliser?

How will you work out which numbers have been used to create this multiplication square?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Andrew decorated 20 biscuits to take to a party. He lined them up and put icing on every second biscuit and different decorations on other biscuits. How many biscuits weren't decorated?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There are ten children in Becky's group. Can you find a set of numbers for each of them? Are there any other sets?

This big box multiplies anything that goes inside it by the same number. If you know the numbers that come out, what multiplication might be going on in the box?

On a farm there were some hens and sheep. Altogether there were 8 heads and 22 feet. How many hens were there?