A game for 2 or more people. Starting with 100, subratct a number from 1 to 9 from the total. You score for making an odd number, a number ending in 0 or a multiple of 6.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you complete this jigsaw of the multiplication square?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Got It game for an adult and child. How can you play so that you know you will always win?

Can you work out how to make each side of this balance equally balanced? You can put more than one weight on a hook.

Find the words hidden inside each of the circles by counting around a certain number of spaces to find each letter in turn.

Factors and Multiples game for an adult and child. How can you make sure you win this game?

How many different rectangles can you make using this set of rods?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Find the squares that Froggie skips onto to get to the pumpkin patch. She starts on 3 and finishes on 30, but she lands only on a square that has a number 3 more than the square she skips from.

If there is a ring of six chairs and thirty children must either sit on a chair or stand behind one, how many children will be behind each chair?

Investigate which numbers make these lights come on. What is the smallest number you can find that lights up all the lights?

Nine squares with side lengths 1, 4, 7, 8, 9, 10, 14, 15, and 18 cm can be fitted together to form a rectangle. What are the dimensions of the rectangle?

How will you work out which numbers have been used to create this multiplication square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Does this 'trick' for calculating multiples of 11 always work? Why or why not?

A game for 2 people using a pack of cards Turn over 2 cards and try to make an odd number or a multiple of 3.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Yasmin and Zach have some bears to share. Which numbers of bears can they share so that there are none left over?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Pat counts her sweets in different groups and both times she has some left over. How many sweets could she have had?

In this problem we are looking at sets of parallel sticks that cross each other. What is the least number of crossings you can make? And the greatest?

Play this game and see if you can figure out the computer's chosen number.

How many trains can you make which are the same length as Matt's and Katie's, using rods that are identical?

Number problems at primary level that may require resilience.

Can you sort numbers into sets? Can you give each set a name?

Can you find the chosen number from the grid using the clues?

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

An investigation that gives you the opportunity to make and justify predictions.

You can make a calculator count for you by any number you choose. You can count by ones to reach 24. You can count by twos to reach 24. What else can you count by to reach 24?

Are these statements always true, sometimes true or never true?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Use this grid to shade the numbers in the way described. Which numbers do you have left? Do you know what they are called?

Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.

A game in which players take it in turns to choose a number. Can you block your opponent?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you work out some different ways to balance this equation?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?