The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Given the products of adjacent cells, can you complete this Sudoku?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

Different combinations of the weights available allow you to make different totals. Which totals can you make?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Five numbers added together in pairs produce: 0, 2, 4, 4, 6, 8, 9, 11, 13, 15 What are the five numbers?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This challenge extends the Plants investigation so now four or more children are involved.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Find out about Magic Squares in this article written for students. Why are they magic?!

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

This Sudoku, based on differences. Using the one clue number can you find the solution?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.