A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A Sudoku based on clues that give the differences between adjacent cells.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A Sudoku that uses transformations as supporting clues.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

How many different symmetrical shapes can you make by shading triangles or squares?

Two sudokus in one. Challenge yourself to make the necessary connections.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

A pair of Sudoku puzzles that together lead to a complete solution.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.