The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Use the clues about the shaded areas to help solve this sudoku

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Four small numbers give the clue to the contents of the four surrounding cells.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

A pair of Sudoku puzzles that together lead to a complete solution.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

A Sudoku that uses transformations as supporting clues.

This Sudoku, based on differences. Using the one clue number can you find the solution?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Two sudokus in one. Challenge yourself to make the necessary connections.

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A challenging activity focusing on finding all possible ways of stacking rods.

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Given the products of diagonally opposite cells - can you complete this Sudoku?

By selecting digits for an addition grid, what targets can you make?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

You need to find the values of the stars before you can apply normal Sudoku rules.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Use the differences to find the solution to this Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

A monkey with peaches, keeps a fraction of them each day, gives the rest away, and then eats one. How long can his peaches last?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?