Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

A Sudoku based on clues that give the differences between adjacent cells.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Two sudokus in one. Challenge yourself to make the necessary connections.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Two sudokus in one. Challenge yourself to make the necessary connections.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

A Sudoku that uses transformations as supporting clues.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This Sudoku, based on differences. Using the one clue number can you find the solution?

How many different symmetrical shapes can you make by shading triangles or squares?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Use the clues about the shaded areas to help solve this sudoku

A pair of Sudoku puzzles that together lead to a complete solution.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?