I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Given the products of diagonally opposite cells - can you complete this Sudoku?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

This Sudoku, based on differences. Using the one clue number can you find the solution?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

Use the clues about the shaded areas to help solve this sudoku

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Find out about Magic Squares in this article written for students. Why are they magic?!

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four small numbers give the clue to the contents of the four surrounding cells.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?