I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Here is a Sudoku with a difference! Use information about lowest common multiples to help you solve it.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Given the products of adjacent cells, can you complete this Sudoku?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Use the clues about the shaded areas to help solve this sudoku

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

A challenging activity focusing on finding all possible ways of stacking rods.

You need to find the values of the stars before you can apply normal Sudoku rules.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

A pair of Sudoku puzzles that together lead to a complete solution.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

This challenge extends the Plants investigation so now four or more children are involved.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Four small numbers give the clue to the contents of the four surrounding cells.