This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Solve the equations to identify the clue numbers in this Sudoku problem.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You need to find the values of the stars before you can apply normal Sudoku rules.

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Four small numbers give the clue to the contents of the four surrounding cells.

Use the clues about the shaded areas to help solve this sudoku

A Sudoku that uses transformations as supporting clues.

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Two sudokus in one. Challenge yourself to make the necessary connections.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

A few extra challenges set by some young NRICH members.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A pair of Sudoku puzzles that together lead to a complete solution.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Two sudokus in one. Challenge yourself to make the necessary connections.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Find out about Magic Squares in this article written for students. Why are they magic?!

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?