You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

The challenge is to find the values of the variables if you are to solve this Sudoku.

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A Sudoku based on clues that give the differences between adjacent cells.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

The clues for this Sudoku are the product of the numbers in adjacent squares.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You need to find the values of the stars before you can apply normal Sudoku rules.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A pair of Sudoku puzzles that together lead to a complete solution.

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Four small numbers give the clue to the contents of the four surrounding cells.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Solve the equations to identify the clue numbers in this Sudoku problem.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.