Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

The clues for this Sudoku are the product of the numbers in adjacent squares.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Given the products of adjacent cells, can you complete this Sudoku?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

You need to find the values of the stars before you can apply normal Sudoku rules.

A pair of Sudoku puzzles that together lead to a complete solution.

A Latin square of order n is an array of n symbols in which each symbol occurs exactly once in each row and exactly once in each column.

Four small numbers give the clue to the contents of the four surrounding cells.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Find out about Magic Squares in this article written for students. Why are they magic?!

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

This Sudoku, based on differences. Using the one clue number can you find the solution?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

How have "Warmsnug" arrived at the prices shown on their windows? Which window has been given an incorrect price?

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Solve the equations to identify the clue numbers in this Sudoku problem.

This Sudoku requires you to do some working backwards before working forwards.