Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Two sudokus in one. Challenge yourself to make the necessary connections.

A Sudoku that uses transformations as supporting clues.

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

A few extra challenges set by some young NRICH members.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Two sudokus in one. Challenge yourself to make the necessary connections.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

You need to find the values of the stars before you can apply normal Sudoku rules.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Use the clues about the shaded areas to help solve this sudoku

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

This Sudoku requires you to do some working backwards before working forwards.

Solve the equations to identify the clue numbers in this Sudoku problem.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This challenge extends the Plants investigation so now four or more children are involved.