Challenge Level

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

Challenge Level

Remember that you want someone following behind you to see where you went. Can yo work out how these patterns were created and recreate them?

Challenge Level

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Challenge Level

Just four procedures were used to produce a design. How was it done? Can you be systematic and elegant so that someone can follow your logic?

Read this article to find out more about the inspiration for NRICH's game, Phiddlywinks.

Challenge Level

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Challenge Level

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Challenge Level

A Sudoku based on clues that give the differences between adjacent cells.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Challenge Level

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

Challenge Level

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

Challenge Level

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Challenge Level

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Challenge Level

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Challenge Level

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Challenge Level

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Challenge Level

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Challenge Level

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Challenge Level

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

Challenge Level

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

Challenge Level

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Challenge Level

Can you use your powers of logic and deduction to work out the missing information in these sporty situations?

Challenge Level

Many natural systems appear to be in equilibrium until suddenly a critical point is reached, setting up a mudslide or an avalanche or an earthquake. In this project, students will use a simple. . . .

Challenge Level

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Challenge Level

By selecting digits for an addition grid, what targets can you make?

Challenge Level

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

Challenge Level

Two sudokus in one. Challenge yourself to make the necessary connections.

Challenge Level

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Challenge Level

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Challenge Level

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Challenge Level

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Challenge Level

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Find out about Magic Squares in this article written for students. Why are they magic?!

Challenge Level

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

Challenge Level

A monkey with peaches, keeps a fraction of them each day, gives the rest away, and then eats one. How long can his peaches last?

Challenge Level

Four small numbers give the clue to the contents of the four surrounding cells.

Challenge Level

Use the differences to find the solution to this Sudoku.

Challenge Level

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Challenge Level

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Challenge Level

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Challenge Level

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly Â£100 if the prices are Â£10 for adults, 50p for pensioners and 10p for children.

Challenge Level

In this game you are challenged to gain more columns of lily pads than your opponent.

Challenge Level

This Sudoku, based on differences. Using the one clue number can you find the solution?

Challenge Level

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?