I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

You need to find the values of the stars before you can apply normal Sudoku rules.

Given the products of diagonally opposite cells - can you complete this Sudoku?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

Solve the equations to identify the clue numbers in this Sudoku problem.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

By selecting digits for an addition grid, what targets can you make?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Gabriel multiplied together some numbers and then erased them. Can you figure out where each number was?

This Sudoku requires you to do some working backwards before working forwards.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Investigate the different ways that fifteen schools could have given money in a charity fundraiser.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.