Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

This Sudoku, based on differences. Using the one clue number can you find the solution?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

This challenge extends the Plants investigation so now four or more children are involved.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Find out about Magic Squares in this article written for students. Why are they magic?!

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Given the products of adjacent cells, can you complete this Sudoku?

You need to find the values of the stars before you can apply normal Sudoku rules.

Mr Smith and Mr Jones are two maths teachers. By asking questions, the answers to which may be right or wrong, Mr Jones is able to find the number of the house Mr Smith lives in... Or not!

A pair of Sudoku puzzles that together lead to a complete solution.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Use the differences to find the solution to this Sudoku.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Four small numbers give the clue to the contents of the four surrounding cells.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

A particular technique for solving Sudoku puzzles, known as "naked pair", is explained in this easy-to-read article.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.