This sudoku requires you to have "double vision" - two Sudoku's for the price of one

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Label the joints and legs of these graph theory caterpillars so that the vertex sums are all equal.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A pair of Sudokus with lots in common. In fact they are the same problem but rearranged. Can you find how they relate to solve them both?

A Sudoku based on clues that give the differences between adjacent cells.

In this Sudoku, there are three coloured "islands" in the 9x9 grid. Within each "island" EVERY group of nine cells that form a 3x3 square must contain the numbers 1 through 9.

In this article, the NRICH team describe the process of selecting solutions for publication on the site.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The challenge is to find the values of the variables if you are to solve this Sudoku.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Take three whole numbers. The differences between them give you three new numbers. Find the differences between the new numbers and keep repeating this. What happens?

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Explore this how this program produces the sequences it does. What are you controlling when you change the values of the variables?

Can you find a cuboid that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

You are given the Lowest Common Multiples of sets of digits. Find the digits and then solve the Sudoku.

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

Pentagram Pylons - can you elegantly recreate them? Or, the European flag in LOGO - what poses the greater problem?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

You need to find the values of the stars before you can apply normal Sudoku rules.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

There is a long tradition of creating mazes throughout history and across the world. This article gives details of mazes you can visit and those that you can tackle on paper.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

How many different symmetrical shapes can you make by shading triangles or squares?

By selecting digits for an addition grid, what targets can you make?

Solve the equations to identify the clue numbers in this Sudoku problem.

This Sudoku requires you to do some working backwards before working forwards.

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Find the values of the nine letters in the sum: FOOT + BALL = GAME