If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

A few extra challenges set by some young NRICH members.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

How many different symmetrical shapes can you make by shading triangles or squares?

Move your counters through this snake of cards and see how far you can go. Are you surprised by where you end up?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

You need to find the values of the stars before you can apply normal Sudoku rules.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Special clue numbers related to the difference between numbers in two adjacent cells and values of the stars in the "constellation" make this a doubly interesting problem.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The items in the shopping basket add and multiply to give the same amount. What could their prices be?

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Find out about Magic Squares in this article written for students. Why are they magic?!

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Bellringers have a special way to write down the patterns they ring. Learn about these patterns and draw some of your own.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Use the differences to find the solution to this Sudoku.

Four small numbers give the clue to the contents of the four surrounding cells.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Whenever a monkey has peaches, he always keeps a fraction of them each day, gives the rest away, and then eats one. How long could he make his peaches last for?

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?