How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the best way to shunt these carriages so that each train can continue its journey?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

These practical challenges are all about making a 'tray' and covering it with paper.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Can you draw a square in which the perimeter is numerically equal to the area?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

How many different triangles can you make on a circular pegboard that has nine pegs?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you find all the different triangles on these peg boards, and find their angles?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.