This activity investigates how you might make squares and pentominoes from Polydron.

Can you draw a square in which the perimeter is numerically equal to the area?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

These practical challenges are all about making a 'tray' and covering it with paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

What can you say about these shapes? This problem challenges you to create shapes with different areas and perimeters.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

In this game for two players, you throw two dice and find the product. How many shapes can you draw on the grid which have that area or perimeter?

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many different triangles can you make on a circular pegboard that has nine pegs?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Can you find all the different triangles on these peg boards, and find their angles?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

What is the best way to shunt these carriages so that each train can continue its journey?