These rectangles have been torn. How many squares did each one have inside it before it was ripped?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

What is the smallest number of tiles needed to tile this patio? Can you investigate patios of different sizes?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

My cousin was 24 years old on Friday April 5th in 1974. On what day of the week was she born?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A thoughtful shepherd used bales of straw to protect the area around his lambs. Explore how you can arrange the bales.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Can you draw a square in which the perimeter is numerically equal to the area?

This activity investigates how you might make squares and pentominoes from Polydron.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This practical challenge invites you to investigate the different squares you can make on a square geoboard or pegboard.

Alice's mum needs to go to each child's house just once and then back home again. How many different routes are there? Use the information to find out how long each road is on the route she took.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest 'ribbon square' you can make? And the smallest? How many different squares can you make altogether?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

How many models can you find which obey these rules?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Sally and Ben were drawing shapes in chalk on the school playground. Can you work out what shapes each of them drew using the clues?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

How many different triangles can you make on a circular pegboard that has nine pegs?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Suppose there is a train with 24 carriages which are going to be put together to make up some new trains. Can you find all the ways that this can be done?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?