A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

I added together some of my neighbours' house numbers. Can you explain the patterns I noticed?

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

A Sudoku that uses transformations as supporting clues.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two sudokus in one. Challenge yourself to make the necessary connections.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Two sudokus in one. Challenge yourself to make the necessary connections.

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

15 = 7 + 8 and 10 = 1 + 2 + 3 + 4. Can you say which numbers can be expressed as the sum of two or more consecutive integers?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

This sudoku requires you to have "double vision" - two Sudoku's for the price of one

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Stuart's watch loses two minutes every hour. Adam's watch gains one minute every hour. Use the information to work out what time (the real time) they arrived at the airport.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Charlie and Abi put a counter on 42. They wondered if they could visit all the other numbers on their 1-100 board, moving the counter using just these two operations: x2 and -5. What do you think?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Given the products of diagonally opposite cells - can you complete this Sudoku?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?