Find the values of the nine letters in the sum: FOOT + BALL = GAME

This Sudoku requires you to do some working backwards before working forwards.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

Each clue in this Sudoku is the product of the two numbers in adjacent cells.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

This Sudoku, based on differences. Using the one clue number can you find the solution?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Given the products of adjacent cells, can you complete this Sudoku?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

Can you replace the letters with numbers? Is there only one solution in each case?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Different combinations of the weights available allow you to make different totals. Which totals can you make?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The puzzle can be solved by finding the values of the unknown digits (all indicated by asterisks) in the squares of the $9\times9$ grid.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

The clues for this Sudoku are the product of the numbers in adjacent squares.

Countries from across the world competed in a sports tournament. Can you devise an efficient strategy to work out the order in which they finished?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Find out about Magic Squares in this article written for students. Why are they magic?!

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Four small numbers give the clue to the contents of the four surrounding cells.

Ben, Jack and Emma passed counters to each other and ended with the same number of counters. How many did they start with?

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

Can you substitute numbers for the letters in these sums?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

Systematically explore the range of symmetric designs that can be created by shading parts of the motif below. Use normal square lattice paper to record your results.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Number problems at primary level that require careful consideration.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?