What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you find all the different ways of lining up these Cuisenaire rods?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Try out the lottery that is played in a far-away land. What is the chance of winning?

Have a go at balancing this equation. Can you find different ways of doing it?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you work out some different ways to balance this equation?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

The pages of my calendar have got mixed up. Can you sort them out?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

If you had 36 cubes, what different cuboids could you make?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

In this matching game, you have to decide how long different events take.

Tim's class collected data about all their pets. Can you put the animal names under each column in the block graph using the information?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

Can you draw a square in which the perimeter is numerically equal to the area?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Investigate the different ways you could split up these rooms so that you have double the number.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

On a digital clock showing 24 hour time, over a whole day, how many times does a 5 appear? Is it the same number for a 12 hour clock over a whole day?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.