This Sudoku requires you to do some working backwards before working forwards.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A Sudoku that uses transformations as supporting clues.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

A few extra challenges set by some young NRICH members.

Two sudokus in one. Challenge yourself to make the necessary connections.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

A monkey with peaches, keeps a fraction of them each day, gives the rest away, and then eats one. How long can his peaches last?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Two sudokus in one. Challenge yourself to make the necessary connections.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

This Sudoku puzzle can be solved with the help of small clue-numbers on the border lines between pairs of neighbouring squares of the grid.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

How long does it take to brush your teeth? Can you find the matching length of time?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

60 pieces and a challenge. What can you make and how many of the pieces can you use creating skeleton polyhedra?

Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

A student in a maths class was trying to get some information from her teacher. She was given some clues and then the teacher ended by saying, "Well, how old are they?"

Find the smallest whole number which, when mutiplied by 7, gives a product consisting entirely of ones.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

This cube has ink on each face which leaves marks on paper as it is rolled. Can you work out what is on each face and the route it has taken?

A cinema has 100 seats. Show how it is possible to sell exactly 100 tickets and take exactly £100 if the prices are £10 for adults, 50p for pensioners and 10p for children.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Replace the letters with numbers to make the addition work out correctly. R E A D + T H I S = P A G E

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

This Sudoku, based on differences. Using the one clue number can you find the solution?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?