Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

These activities focus on finding all possible solutions so if you work in a systematic way, you won't leave any out.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

The Zargoes use almost the same alphabet as English. What does this birthday message say?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

How many models can you find which obey these rules?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

Can you create jigsaw pieces which are based on a square shape, with at least one peg and one hole?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Six friends sat around a circular table. Can you work out from the information who sat where and what their profession were?

The Vikings communicated in writing by making simple scratches on wood or stones called runes. Can you work out how their code works using the table of the alphabet?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?