A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find all the different ways of lining up these Cuisenaire rods?

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

If you take a three by three square on a 1-10 addition square and multiply the diagonally opposite numbers together, what is the difference between these products. Why?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Two sudokus in one. Challenge yourself to make the necessary connections.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

On a digital 24 hour clock, at certain times, all the digits are consecutive. How many times like this are there between midnight and 7 a.m.?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Ram divided 15 pennies among four small bags. He could then pay any sum of money from 1p to 15p without opening any bag. How many pennies did Ram put in each bag?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

You need to find the values of the stars before you can apply normal Sudoku rules.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

An investigation that gives you the opportunity to make and justify predictions.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

A few extra challenges set by some young NRICH members.

This second Sudoku article discusses "Corresponding Sudokus" which are pairs of Sudokus with terms that can be matched using a substitution rule.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Two sudokus in one. Challenge yourself to make the necessary connections.