Solve this Sudoku puzzle whose clues are in the form of sums of the numbers which should appear in diagonal opposite cells.

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Given the products of diagonally opposite cells - can you complete this Sudoku?

Each of the main diagonals of this sudoku must contain the numbers 1 to 9 and each rectangle width the numbers 1 to 4.

Two sudokus in one. Challenge yourself to make the necessary connections.

Two sudokus in one. Challenge yourself to make the necessary connections.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

This pair of linked Sudokus matches letters with numbers and hides a seasonal greeting. Can you find it?

Solve the equations to identify the clue numbers in this Sudoku problem.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Add or subtract the two numbers on the spinners and try to complete a row of three. Are there some numbers that are good to aim for?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

An extra constraint means this Sudoku requires you to think in diagonals as well as horizontal and vertical lines and boxes of nine.

The puzzle can be solved with the help of small clue-numbers which are either placed on the border lines between selected pairs of neighbouring squares of the grid or placed after slash marks on. . . .

How long does it take to brush your teeth? Can you find the matching length of time?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

This is a variation of sudoku which contains a set of special clue-numbers. Each set of 4 small digits stands for the numbers in the four cells of the grid adjacent to this set.

A few extra challenges set by some young NRICH members.

Hover your mouse over the counters to see which ones will be removed. Click to remove them. The winner is the last one to remove a counter. How you can make sure you win?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Four numbers on an intersection that need to be placed in the surrounding cells. That is all you need to know to solve this sudoku.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Rather than using the numbers 1-9, this sudoku uses the nine different letters used to make the words "Advent Calendar".

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Have a go at this game which has been inspired by the Big Internet Math-Off 2019. Can you gain more columns of lily pads than your opponent?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A Sudoku that uses transformations as supporting clues.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

You need to find the values of the stars before you can apply normal Sudoku rules.

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

What is the best way to shunt these carriages so that each train can continue its journey?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?