Can you make square numbers by adding two prime numbers together?
Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.
The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.
This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?
This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!
There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?
What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?
Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?
A group of children are using measuring cylinders but they lose the labels. Can you help relabel them?
There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.
Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.
This challenge focuses on finding the sum and difference of pairs of two-digit numbers.
There are lots of different methods to find out what the shapes are worth - how many can you find?
Using the statements, can you work out how many of each type of rabbit there are in these pens?
Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?
How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?
Throughout these challenges, the touching faces of any adjacent dice must have the same number. Can you find a way of making the total on the top come to each number from 11 to 18 inclusive?
In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?
Complete the magic square using the numbers 1 to 25 once each. Each row, column and diagonal adds up to 65.
Can you use this information to work out Charlie's house number?
There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.
Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?
This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!
Number problems at primary level that require careful consideration.
On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?
Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?
Can you substitute numbers for the letters in these sums?
Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?
Find the sum and difference between a pair of two-digit numbers. Now find the sum and difference between the sum and difference! What happens?
Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?
Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?
You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?
There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?
If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?
Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.
Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?
Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?
There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?
This task follows on from Build it Up and takes the ideas into three dimensions!
What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.
This task, written for the National Young Mathematicians' Award 2016, focuses on 'open squares'. What would the next five open squares look like?
Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?
Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.
Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?
You have 5 darts and your target score is 44. How many different ways could you score 44?
Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?
This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.
These two group activities use mathematical reasoning - one is numerical, one geometric.
An investigation that gives you the opportunity to make and justify predictions.
How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?