What happens when you round these numbers to the nearest whole number?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these three-digit numbers to the nearest 100?

How could you arrange at least two dice in a stack so that the total of the visible spots is 18?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Roll two red dice and a green dice. Add the two numbers on the red dice and take away the number on the green. What are all the different possible answers?

This dice train has been made using specific rules. How many different trains can you make?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Can you replace the letters with numbers? Is there only one solution in each case?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

You have 5 darts and your target score is 44. How many different ways could you score 44?

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Using the statements, can you work out how many of each type of rabbit there are in these pens?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Investigate the different ways you could split up these rooms so that you have double the number.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Ben has five coins in his pocket. How much money might he have?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?