How many solutions can you find to this sum? Each of the different letters stands for a different number.

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

What is the best way to shunt these carriages so that each train can continue its journey?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find all the ways to get 15 at the top of this triangle of numbers? Many opportunities to work in different ways.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Number problems at primary level that require careful consideration.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This task encourages you to investigate the number of edging pieces and panes in different sized windows.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

The letters of the word ABACUS have been arranged in the shape of a triangle. How many different ways can you find to read the word ABACUS from this triangular pattern?

When you throw two regular, six-faced dice you have more chance of getting one particular result than any other. What result would that be? Why is this?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you substitute numbers for the letters in these sums?

What is the smallest number of coins needed to make up 12 dollars and 83 cents?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In this matching game, you have to decide how long different events take.

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.