How many models can you find which obey these rules?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

What happens when you try and fit the triomino pieces into these two grids?

Take three differently coloured blocks - maybe red, yellow and blue. Make a tower using one of each colour. How many different towers can you make?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How will you go about finding all the jigsaw pieces that have one peg and one hole?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

What is the best way to shunt these carriages so that each train can continue its journey?

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Using the cards 2, 4, 6, 8, +, - and =, what number statements can you make?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

These activities lend themselves to systematic working in the sense that it helps if you have an ordered approach.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

My briefcase has a three-number combination lock, but I have forgotten the combination. I remember that there's a 3, a 5 and an 8. How many possible combinations are there to try?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

When I fold a 0-20 number line, I end up with 'stacks' of numbers on top of each other. These challenges involve varying the length of the number line and investigating the 'stack totals'.

Find all the numbers that can be made by adding the dots on two dice.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Use the clues to find out who's who in the family, to fill in the family tree and to find out which of the family members are mathematicians and which are not.