Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Can you help the children find the two triangles which have the lengths of two sides numerically equal to their areas?

An activity making various patterns with 2 x 1 rectangular tiles.

How many different triangles can you draw on the dotty grid which each have one dot in the middle?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you had 36 cubes, what different cuboids could you make?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Find all the different shapes that can be made by joining five equilateral triangles edge to edge.

Here are four cubes joined together. How many other arrangements of four cubes can you find? Can you draw them on dotty paper?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you make on a circular pegboard that has nine pegs?

How many models can you find which obey these rules?

Vincent and Tara are making triangles with the class construction set. They have a pile of strips of different lengths. How many different triangles can they make?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

This article for teachers suggests activities based on pegboards, from pattern generation to finding all possible triangles, for example.

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

Can you draw a square in which the perimeter is numerically equal to the area?

Cut differently-sized square corners from a square piece of paper to make boxes without lids. Do they all have the same volume?

This challenge is about finding the difference between numbers which have the same tens digit.

If you put three beads onto a tens/ones abacus you could make the numbers 3, 30, 12 or 21. What numbers can be made with six beads?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

My local DIY shop calculates the price of its windows according to the area of glass and the length of frame used. Can you work out how they arrived at these prices?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How many rectangles can you find in this shape? Which ones are differently sized and which are 'similar'?

What happens when you try and fit the triomino pieces into these two grids?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Investigate all the different squares you can make on this 5 by 5 grid by making your starting side go from the bottom left hand point. Can you find out the areas of all these squares?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This challenge is to design different step arrangements, which must go along a distance of 6 on the steps and must end up at 6 high.