There are seven pots of plants in a greenhouse. They have lost their labels. Perhaps you can help re-label them.

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Nina must cook some pasta for 15 minutes but she only has a 7-minute sand-timer and an 11-minute sand-timer. How can she use these timers to measure exactly 15 minutes?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Investigate the different ways you could split up these rooms so that you have double the number.

Place the numbers 1 to 8 in the circles so that no consecutive numbers are joined by a line.

Place eight queens on an chessboard (an 8 by 8 grid) so that none can capture any of the others.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

These activities focus on finding all possible solutions so working in a systematic way will ensure none are left out.

This challenge, written for the Young Mathematicians' Award, invites you to explore 'centred squares'.

A merchant brings four bars of gold to a jeweller. How can the jeweller use the scales just twice to identify the lighter, fake bar?

Sitting around a table are three girls and three boys. Use the clues to work out were each person is sitting.

What is the smallest number of jumps needed before the white rabbits and the grey rabbits can continue along their path?

How many trapeziums, of various sizes, are hidden in this picture?

The Zargoes use almost the same alphabet as English. What does this birthday message say?

Put 10 counters in a row. Find a way to arrange the counters into five pairs, evenly spaced in a row, in just 5 moves, using the rules.

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

Place eight dots on this diagram, so that there are only two dots on each straight line and only two dots on each circle.

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Sweets are given out to party-goers in a particular way. Investigate the total number of sweets received by people sitting in different positions.

These activities lend themselves to systematic working in the sense that it helps to have an ordered approach.

In how many ways can you stack these rods, following the rules?

This tricky challenge asks you to find ways of going across rectangles, going through exactly ten squares.

There are lots of different methods to find out what the shapes are worth - how many can you find?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

This task, written for the National Young Mathematicians' Award 2016, invites you to explore the different combinations of scores that you might get on these dart boards.

How many shapes can you build from three red and two green cubes? Can you use what you've found out to predict the number for four red and two green?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Can you work out how to balance this equaliser? You can put more than one weight on a hook.

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?