There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you arrange 5 different digits (from 0 - 9) in the cross in the way described?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Number problems at primary level that require careful consideration.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This magic square has operations written in it, to make it into a maze. Start wherever you like, go through every cell and go out a total of 15!

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you substitute numbers for the letters in these sums?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Cherri, Saxon, Mel and Paul are friends. They are all different ages. Can you find out the age of each friend using the information?

Using the statements, can you work out how many of each type of rabbit there are in these pens?

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

These eleven shapes each stand for a different number. Can you use the number sentences to work out what they are?

Look carefully at the numbers. What do you notice? Can you make another square using the numbers 1 to 16, that displays the same properties?

Can you put plus signs in so this is true? 1 2 3 4 5 6 7 8 9 = 99 How many ways can you do it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you find the chosen number from the grid using the clues?

This dice train has been made using specific rules. How many different trains can you make?

Alice and Brian are snails who live on a wall and can only travel along the cracks. Alice wants to go to see Brian. How far is the shortest route along the cracks? Is there more than one way to go?

Can you work out some different ways to balance this equation?

These are the faces of Will, Lil, Bill, Phil and Jill. Use the clues to work out which name goes with each face.

Can you fill in this table square? The numbers 2 -12 were used to generate it with just one number used twice.

How could you put eight beanbags in the hoops so that there are four in the blue hoop, five in the red and six in the yellow? Can you find all the ways of doing this?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Place this "worm" on the 100 square and find the total of the four squares it covers. Keeping its head in the same place, what other totals can you make?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

Can you make square numbers by adding two prime numbers together?

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

Find the product of the numbers on the routes from A to B. Which route has the smallest product? Which the largest?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Exactly 195 digits have been used to number the pages in a book. How many pages does the book have?

Can you use this information to work out Charlie's house number?

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Use these head, body and leg pieces to make Robot Monsters which are different heights.

The discs for this game are kept in a flat square box with a square hole for each. Use the information to find out how many discs of each colour there are in the box.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

On my calculator I divided one whole number by another whole number and got the answer 3.125. If the numbers are both under 50, what are they?

Have a go at balancing this equation. Can you find different ways of doing it?

In this problem it is not the squares that jump, you do the jumping! The idea is to go round the track in as few jumps as possible.

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

My dice has inky marks on each face. Can you find the route it has taken? What does each face look like?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

Your challenge is to find the longest way through the network following this rule. You can start and finish anywhere, and with any shape, as long as you follow the correct order.