Can you find the chosen number from the grid using the clues?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Ben and his mum are planting garlic. Can you find out how many cloves of garlic they might have had?

Frances and Rishi were given a bag of lollies. They shared them out evenly and had one left over. How many lollies could there have been in the bag?

Use the numbers and symbols to make this number sentence correct. How many different ways can you find?

There is a clock-face where the numbers have become all mixed up. Can you find out where all the numbers have got to from these ten statements?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

What happens when you add three numbers together? Will your answer be odd or even? How do you know?

Number problems at primary level that require careful consideration.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

Use the information to describe these marbles. What colours must be on marbles that sparkle when rolling but are dark inside?

A game for 2 people. Take turns placing a counter on the star. You win when you have completed a line of 3 in your colour.

Only one side of a two-slice toaster is working. What is the quickest way to toast both sides of three slices of bread?

Tom and Ben visited Numberland. Use the maps to work out the number of points each of their routes scores.

There are 4 jugs which hold 9 litres, 7 litres, 4 litres and 2 litres. Find a way to pour 9 litres of drink from one jug to another until you are left with exactly 3 litres in three of the jugs.

Add the sum of the squares of four numbers between 10 and 20 to the sum of the squares of three numbers less than 6 to make the square of another, larger, number.

My coat has three buttons. How many ways can you find to do up all the buttons?

There are 44 people coming to a dinner party. There are 15 square tables that seat 4 people. Find a way to seat the 44 people using all 15 tables, with no empty places.

Can you replace the letters with numbers? Is there only one solution in each case?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

Lorenzie was packing his bag for a school trip. He packed four shirts and three pairs of pants. "I will be able to have a different outfit each day", he said. How many days will Lorenzie be away?

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

Use your logical-thinking skills to deduce how much Dan's crisps and ice-cream cost altogether.

Can you order the digits from 1-3 to make a number which is divisible by 3 so when the last digit is removed it becomes a 2-figure number divisible by 2, and so on?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Find out about Magic Squares in this article written for students. Why are they magic?!

Can you put the numbers 1-5 in the V shape so that both 'arms' have the same total?

Can you work out the arrangement of the digits in the square so that the given products are correct? The numbers 1 - 9 may be used once and once only.

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Can you substitute numbers for the letters in these sums?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

The planet of Vuvv has seven moons. Can you work out how long it is between each super-eclipse?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

What do you notice about the date 03.06.09? Or 08.01.09? This challenge invites you to investigate some interesting dates yourself.

Katie had a pack of 20 cards numbered from 1 to 20. She arranged the cards into 6 unequal piles where each pile added to the same total. What was the total and how could this be done?

This article for teachers describes several games, found on the site, all of which have a related structure that can be used to develop the skills of strategic planning.

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

The NRICH team are always looking for new ways to engage teachers and pupils in problem solving. Here we explain the thinking behind maths trails.

This problem is based on the story of the Pied Piper of Hamelin. Investigate the different numbers of people and rats there could have been if you know how many legs there are altogether!

Can you arrange the digits 1, 1, 2, 2, 3 and 3 to make a Number Sandwich?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?